《烙饼问题》教学反思
作为一名到岗不久的人民教师,我们要有一流的教学能力,通过教学反思能很快的发现自己的讲课缺点,优秀的教学反思都具备一些什么特点呢?以下是小编帮大家整理的《烙饼问题》教学反思,欢迎阅读,希望大家能够喜欢。
《烙饼问题》教学反思1“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕怎样烙饼,才能尽快吃上饼?展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程,整节课根据不同的教学环节我渗透了以下理念:
1、解放学生的手,让学生操作实践
“生本教育”理念强调以学生为本,充分发挥学生学习的自主性。课前我让学生进行了自主小研究,要求让学生以圆形纸片替代饼,自己先进行烙饼活动,自主探究1张饼,2张饼,3张饼的最少烙饼时间。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。并且,这一环节,紧密联系学生生活实际,从学生的生活经验和原有的知识出发,创设了生动,现实的情境让学生在兴趣盎然的活动中感受到生活中处处有数学,数学时时为我们生活服务,从而让学生更好的学习数学。
2、解放学生的口,让学生畅所欲言。
课堂上,我让学生以小组为单位,进行交流、展示、再全班交流,特别是3张饼怎么烙这个重难点,让学生说,让学生议,充分以生为本,师只在关键处引导,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。水尝水华相荡乃成涟漪;石本无火,相击而发灵光”。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。
3、让学生体会数学思想方法
“烙饼问题”,它所呈现的是优化问题,优化问题是人们经常要遇到的问题,例如,我们出门旅行就要考虑选择怎样的路线和交通工具,才能使旅行所需费用最少或者所花的时间最短;所以课堂上一定要让学生体会到这种数学思想方法。这节课中我认为学生体会的还不错。
本节中也存在很多不足,“生本理念”体现的还不够,教师放手的力度不大,特别是让学生找烙饼规律时,师讲的还是太多,此外本节中练习的也不多。
《烙饼问题》教学反思2临近期末,“数学广角”的知识成了这段时间的教学重点。本册(四年级上册)的“数学广角”包括了:烙饼问题、合理安排时间(统筹方法)、排队求等候时间总和、田忌赛马(对策论)这四个内容。看看课时安排,只有四课时,书上的内容,也好像很浅显。可是实际教学当中,要把各种方法在课堂中落实下去,知道过程,掌握方法,灵活运用,这其中的容量是很大的。下面就“烙饼问题”谈谈自己的想法:
“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题向学生渗透简单的优化思想,让学生从中体会统筹思想在日常生活中的作用,感受数学的魅力。本节课我立足于培养学生良好的思维能力,从学生的生活经验和原有的基础知识出发,创设生活情境,以“烙饼”为主题,让学生借助学具操作,围绕怎样烙饼,亲身经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的最佳方法。在本课教学中,我突出了以下几点:
本节课我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼”展开教学,设计了烙1张、2张、3张……单张,双张饼的探究过程。
在本课的教学中,我以烙3张饼作为教学突破点,首先引导学生观察、理解情境图里的内容,理解了问题情境和需要解决的问题后,让学生独立思考,再分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间烙完。学生可能会有不同的方案,我把各小组汇报的不同方案在黑板上展示出来,让大家来比较各种方案的优劣。这一环节是让学生形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。
然后,我又分别让学生讨论烙4——9张饼的最佳方法,从而总结得到规律:双数张饼就2张2张地烙;单数张饼就用最优方法先烙3张,然后再2张2张的烙,或者先2张2张地烙,剩下3张的时候用最优方法烙。至于求“最少要用多长时间”这个问题,用次数×每次所用时间即可。
相信学生,放手让学生探索解决问题的方法,是本节课的成功之处。学生通过动手操作,探索尝试,再进行比较,既有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。
《烙饼问题》教学反思3本节课让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。
成功之处:
1.重视学生动手操作,在操作中发现规律。在教学中让学生利用准备的圆片进行动手操作,通过操作学生会出现如下几种情况:
(1)每次烙完一张饼,6+6+6=18(分钟)
(2)第一次烙1号和2号饼的正面,第二次烙1号和2号饼的反面,第三次烙3号饼的正面,第四次烙3号饼的反面,3+3+3+3=12(分钟)
(3)第一次烙1号和2号饼的正面,第二次烙1号的反面和3号饼的正面,第三次烙2号和3号饼的反面,3+3+3=9(分钟)
然后教师让学生进行观察,哪种方法可以尽快吃上饼呢,为什么?小组进行交流和讨论,最后达成共识:每次总烙2张饼,别让锅空闲,这样应该最省时间。
在此基础上,教师进一步提出问题:如果要烙4张饼、5张饼、6张饼……呢?你发现了什么?由此得出:饼的张数×每面烙的时间=所需最少时间。
2.延伸拓展,启迪思维。在学生发现烙饼的规律后,教师提出当每次最多能烙3张饼,这个规律是否依然适用呢?你又会发现什么呢?学生经过思考发现只要把饼的张数×每面烙的时间=所需最少时间转化为总面数÷每次可烙的面数×每面烙的时间=所需最少时间就可以得出答案。在这个过程中“总面数÷每次可烙的面数”实际上就等于饼的张数。
不足之处:
由于对烙饼问题进行了拓展,导致练习时间不充分,学生对于烙饼问题的规律掌握不够熟练,出现了应用规律解决问题时学生对于每面烙的时间理解不到位,把每面烙的时间和烙一张饼所用的时间混淆,没有注意到必须用饼的张数乘每面烙的时间。
再教设计:
对于烙饼问题的拓展可以留给学生课后进行思考,应该留有更多的时间对本节课的问题进行针对性的训练,不留知 ……此处隐藏5289个字……用激励性语言来鼓舞学生,语言还应再简练些。
3.课堂情绪调控有待加强,受学生的状态影响较大,不能很好的自我调节。
4.我对于课堂上学生的生成性问题,处理的不到位。如:有一名学生自豪的说:“老师我可以6分钟完成,就是把第三张饼分成两半放到锅的两边一起烙就行了。”等像这类的问题处理的不到位。
《烙饼问题》教学反思91、创造多种形式,突破重、难点。为了突破难点,很短的时间让学生了解烙一张、两张饼至少需要的时间,为探究三张饼的最佳烙法作好铺垫。在探究三张饼的最佳烙法时,学生首先想到的是要12分钟,我就问:“还有更省时的方案吗?”激发学生的求知欲,迫使他们重新思考和操作。于是出现了两种方法:第一种先烙烙两张,再烙一张,学生提出异议,并让他进行板演,出现我们预设的第二种方法:三张轮换烙。并通过多媒体课件直观展示两种轮换烙的过程,直观比较出第一种要烙4次,而第二种只需烙三次,节省3分钟,又通过表格的填写加深三张轮换烙的方法。为什么第二种三张轮换烙方法会比第一种方法节省3分钟呢,通过再现直观图,学生得出:保证每次锅子里总有两张饼呀。并培养空间想象能力,从而达到突破难点的目的。为了突出“如何用优化思想解决生活中的问题”这一教学重点,我是这样做的:首先,在探究烙两张饼至少需要几分钟时,有的学生说要12分钟,有的学生说6分钟,从而引发分歧,激起学生争辩及思维的碰撞。再通过各自陈述理由后对比发现:锅子里同时烙两张饼更省时省资源,让学生初步感受到从多种方案中寻找最优方案的重要性。其次,在探究三张饼至少需要几分钟的时候,有的学生说要12分钟,有的学生说要9分钟。再次引导学生对比发现:两张同时烙法操作起来简单,三张轮换烙法虽然复杂,但更省时,也符合题意。进一步加深了学生对“选择优化思想解决问题”重要性的印象。另外,在探究6张饼的最佳烙法时,也许有的学生会选择用同时烙法烙三次,有的学生会选择用三张轮换烙法烙两次。虽然两种方案都是需要18分钟,但通过引导学生对比发现,用同时烙法烙三回操作起来更简便。让学生再次感受到在时间相同的情况下,还要选择操作过程的最优化。
2、解放学生的手,让学生操作实践。《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。如,我让学生明确要求以圆形纸片替代饼,与家人或小伙伴进行烙饼活动。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。我要求用学具同桌模拟烙饼,一人烙饼,一人记录。有多种方案的请轮流记录。并且,这一环节,紧密联系学生生活实际,从学生的生活经验和原有的知识出发,创设了生动,现实的情境让学生在兴趣盎然的活动中感受到生活中处处有数学,数学时时为我们生活服务,从而让学生更好的学习数学。
3、解放学生口,让学生畅所欲言。上课时,我让学生以小组为单位,进行交流、展示、再全班交流,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。在研究“烙3张饼需要多少时间”(这是本课的教学重点)时,由于有小精灵的要求“怎样才能尽快吃上饼”这句话,所以在实际的课堂里,虽然出现像教材中提到的烙一张饼要6分时间,烙3张饼要18分这一方案,但很快被孩子们自己给否定了,因为四年级学生能充分利用“每次能烙两张饼”这个条件。
4、给孩子一个发展的课堂。教材在最后安排了“如果要烙的是4张饼,5张饼……9张饼呢?”你发现了什么“。在课堂中,学生能根据表格中的烙饼方法渗透数学转化的思想,把多张饼都转化成两张同时烙或三张轮换烙,还有的孩子还从表格中发现双数饼了两张两张的烙,单数饼先两张两张烙,最后三张轮换烙的规律;还根据表格中的烙饼张数和烙饼的时间之间的关系得出。”饼数×3=烙饼总时间“这一规律,使整节课得到升华,数学教学不仅是传授知识的结果,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有不断加强学习,不断提升专业技能,才能给学生一个创新的课堂,一个发展的课堂。
《烙饼问题》教学反思10“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。关于这方面的教学建议,《数学课程标准》指出:让学生借助学具操作,经历探索数学知识的过程,逐步掌握最佳方法,通过简单最优化的问题向学生渗透优化思想,让学生体会运筹思想在解决实际问题中的应用价值,来感受数学的魅力。
在课堂教学中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕大问题“怎样烙饼才能尽快吃上饼?”展开教学,循序渐进设计了烙2张、3张、多张饼的探究过程。为什么不提烙1张饼的过程,我是从两个方面去思考的:一是从解决问题的角度出发,给定信息中明确了每次可以烙2张饼,没有必要浪费;二是在建构数学模型的过程中不便于建立“饼数×3=最少时间”的数学模型;还有就是在烙3张饼时就会碰到烙1张饼的情况,这也会成为学生学习中的一个强大认知冲突,我就以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生小组合作中重点讨论烙3张饼的思维过程,学生将烙饼的方法记录在作业纸上,代替烙饼的纸都编了号、并且注明了饼的正面、反面,汇报时学生讲述起来非常清晰完整。通过合作、学生动手操作想一想,说一说,摆一摆的过程让学生真正动眼、动手、动脑参与获取知识的过程。学生们做到了在操作中感知,在实践中升华,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。
在发现数学规律、建构数学模型的过程中,我让学生仔细观察表格、小组讨论交流,说一说自己的发现。(根据情况决定是否给学生启示:1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)
学生在充分交流探讨的基础上,得出结论:1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。(我们把自己探讨的烙3张饼的方法称为快速烙饼法)得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
本节课的成功处在于,相信学生,把学生推上学习的主体地位。课堂上以一个个具体事例让学生观察、操作、讨论和交流等活动,使学生在解决具体问题中体会数学的方法及应用价值,学会优化思想,从课堂教学中多次为学生提供从事数学活动的机会。在这些活动中,教师以组织者、引导者、合作者的角色把学生推上主体地位,把学生思维引向深刻、细致,让他们感受到数学的严谨性和结论的确定性。
在课堂上,问题由学生来提,答案由学生来找,整个课堂是学生在探究、在发现、在解读,教师把自己巧妙地“隐藏”了起来。但这种“隐藏”并不意味着教师退出课堂活动,相反,教师要更好地扮演组织者和引导者的角色,将更多的精力用在创造性地设计教学环节、唤醒学生的学习热情、点燃学生的思维火花等方面上。