两位数乘两位数的教学设计

时间:2024-06-13 06:56:06
人教版两位数乘两位数的教学设计

人教版两位数乘两位数的教学设计

作为一名无私奉献的老师,时常要开展教学设计的准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。我们应该怎么写教学设计呢?下面是小编帮大家整理的人教版两位数乘两位数的教学设计,希望能够帮助到大家。

人教版两位数乘两位数的教学设计1

一、教材:

1、教学内容及简析:

本课的教学内容是两位数乘两位数的笔算,它是学生在已经掌握了两位数乘一位数和两位数乘整十数的口算的基础上进一步学习的,为后面学习乘数数位是更多位的笔算乘法垫定基础。这部分内容是学生计算方面学习的重要转折点。

2、教学目标:

知识目标:经历探索两位数乘两位数笔算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。

能力目标:培养观察力、探究能力、抽象概括能力。

情感目标:获得成功的体验,树立学习的信心。

3、教学重点、难点:

重点:掌握两位数乘两位数的笔算方法。

难点:理解乘的顺序及第二部分积的书写方法。

二、教法、学法:

针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。

在学法指导上,让学生掌握观察、比较、发现、交流、合作等学习方法。

三、教学设想:

课本中以订牛奶为情境,我进行了改编,以学生献爱心活动为研究题材,贴合学生实际,通过四个环节进行教学:创设情境,激发兴趣;自主探索,研究算法;巩固强化,拓展延伸。

(一)创设情境,以旧引新

在教学的导入环节,老师充分依据学生原有的知识和经验,从复习两位数乘一位数、两位数乘整十数,在此基础上,再引出两位数乘两位数。老师有意识提问:你想怎样学习新知识?让他们运用已有知识经验将难点转化,以旧知解决新问题,从而渗透数学学习的方法。

(二)自主探索,研究算法

1、渗透估算意识。教学过程中先让学生估算,再尝试用笔算,这样使估算、笔算有机结合。

2、计算方法的多样化到优化。计算教学,内容比较枯燥乏味。为激发学生的求知欲望,老师通过充分创设问题情境,多种方式体会两位数乘两位数的计算方法。学生可能出现3种情况,

情况一:28×6×2;

情况二:28×4×3;

情况三:28×10+28×2。

让学生从不同的角度、运用不同的策略去思考、探索计算的方法,通过比较认识到笔算方法的重要性,从而一起探索竖式计算的方法。

3、注重沟通,理解算理。在师生共同交流中引导学生理解把两位数乘两位数的计算分成三个部分,前面两部分都可以看成是两位数乘一位数、整十数,但着重让学生明确第二次计算的书写,第三部分,将两次计算的结果相加。竖式计算的算理与学生前面的方法是一致的,教师要注重沟通,让学生更好地理解算理,掌握每一步计算的意义。

4、归纳总结。两位数乘两位数的计算方法的叙述对三年级学生来说,有点困难,要求学生根据对算理的理解用自己的话来讲就行了,教师简要的板书为学生提供思考方向。

5、验证结果,提高效率。在笔算中,验算是最好的验证方法。因此,让学生交换48和12的位置再乘一遍,然后引导学生观察:你发现了什么?总结出乘法的.验算方法。

(三)有效练习,巩固延伸

第一组安排的4题不同的练习,主要是让学生在理解的基础上从而进行独立的计算过程,第1题明确得数数字相同意义却是不同的,3、4两题的计算都有向前一位进位的问题,拓展了例题的教学。

第2题纠错题,让学生进一步理解每一步计算的意义。

第3题解决问题部分的设计,是为了增加数学计算的趣味性,让学生觉得数学学习与生活的紧密联系。

第4题是开放性练习,也是提高了计算难度,有基础练习、有提高性的进位练习,自己出题时还有可能两次相乘都有进位。

练习中的习题从不进位到进位,主要是基于这样的考虑,因为对于学生来说,顺序方法都是一样的,进位的问题也是在多位数乘一位数中学过了,对于学生来说,不是新问题,但会感觉有点困难。当然,计算要达到一定的正确率和熟练程度,必须要相当的练习量。

人教版两位数乘两位数的教学设计2

教学目标:

知识与技能:

1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。

2、自主探究出多种两位数乘两位数的计算方法。

3、根据具体题目情景,合理选择解题策略。

过程与方法:

经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。

情感态度与价值观:

调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。

教学重点:

自主探究出多种两位数乘两位数的计算方法,并能正确地进行计算。

教学难点:

通过让学生亲身经历两位数乘两位数的计算过程,培养他们的算法思维。

教学过程:

一、情景导入,激发学生学习兴趣。

师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。

瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?

二、自主探究。

(一)、探究算法

1、列式:14×12=

2、14×12等于多少呢?

(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。

(2)将学生生成性资源展示在黑板上(包括错误的),组织学生独自看各种展示的方法,记录下有意见或有疑惑的算法

(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。

(4)将上述方法进行整理归类(小组讨论)

(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?

(二)、体会算法;体验不同的题,最优的方法也不同

1、师:那就请你先用自己最喜欢的方法算一算13×18,然后告诉你的同桌你怎么算的?

交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?

师:看来小朋友不但会用自己喜欢的`方法来算,而且还能从别人那里学到不一样的方法,很会学习。

2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计 ……此处隐藏6437个字……老师点击屏幕,出现——好人)

师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我

蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!

(二)新课教学

同学们,你们知道吗,在我们学过的两位数乘两位数中也有这样的对称现象,我们今天就来复习两位数乘两位数(板书课题),让老师随手写几个两位数乘两位数的算式,好不好?

(老师出示21×36、41×28、36×42、96×46),老师写了几个算式,想一想,如果在这几个算式的后面也存在着一条对称轴,和它们对称的算式是什么?(提问)可见,在两位数乘两位数中,还真的有这样的对称现象,是不是?是!可是,老师觉得,我们就这样写出几个对称算式,也并没有什么了不起,如果我们能够发现,这每一组对称算式之间的一些秘密,那是不是就更棒了?如果我让你们去研究,那你们会试着研究什么问题呢?或者说,你们会有些什么猜想呢?有没有?你们有没有觉得这两个算式之间会有什么联系呢?

学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!

哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!

生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。

生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。

生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。

师:奇怪了!用估算方法算出来的每组两道算式的积有时相等,有时却不相等。那么,用估算方法能否判断每组算式的积是否相等呢?(不能)那可以用什么方法来判断呢?

生:笔算。

那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。

看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。

(学生交流计算结果)那通过我们的计算,你们能得出什么结论?

(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)

(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):

两位数乘两位数,两个“对称算式”的乘积相等。

(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。

老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”

(老师板书)对于“不完全归纳法”,有一个非常美丽的故事:那就是华罗庚爷爷讲给他的中学生听的,今天我也想把这个故事将给大家听,好不好?听完这个故事,我们再来说一说这个结论你是否相信,好吗?

故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。

好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的.那一种情况戏称为“公鸡归纳法”。

师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?

(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!

(一个孩子举例说明14×16不等于61×41)

师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!

提问:(一个孩子举例)46×61不等于16×64。

师:我们都没有计算,只有他在计算,我想问一问大家,如果看到这组对称算式,你能否判断他们的乘积是否相等呢?你看的出吗?

我看到已经有同学举起了智慧的手!

(提问)这位同学的发言有值得我们学习的地方,他想到了估算,46×61他把这两个数都往小里估,把46估成40,61估成60,结果是2400,而16×64,把它们都往大里估,把16估成20,把64估成70,结果是1400,因为40×60=2400,20×70=1400显然这里不是等号,而是一个大于号,好了同学们,我知道大家很多同学都找到了反例,但是我们知道只需要一个反例,就可以说明这个结论是有问题的,那我现在问一问大家,你们失望吗?费了那么大劲找到的结论居然是错误的,什么不失望,为什么不失望?是的,我们并不失望,因为我们最起码通过自己的努力,证明了这个结论是有问题的!哎,我想现在有些同学的心里肯定有这样的疑问;为什么老师写的算式都符合这个规律,而同学们写的算式却不符合这个规律呢?难道老师写的算式里隐藏着什么秘密吗?有吗?

(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)

师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)

得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。

师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。

好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!

《人教版两位数乘两位数的教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式