三角形的认识教学设计12篇
作为一名教职工,时常要开展教学设计的准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。那么大家知道规范的教学设计是怎么写的吗?以下是小编为大家整理的三角形的认识教学设计,欢迎大家分享。
三角形的认识教学设计1教学设计综述
1、基本说明
●学科领域:数学,并涉及劳技、语文、美术、信息技术教育
●智能领域:语言、数学逻辑、视觉空间、身体运动、人际沟通
●适用年级:小学三年级第一学期(实验教材)
●所需时间:1课时
2、理念概述
通过运用多元智能理论指导日常教学,促进每一个孩子的发展,一直是我校的教研特色。本学期使用的上海市数学二期课改实验教材,实际是对数学教师教学技能的考验和磨炼。如何用好这本教材,领会新教材的意图并在课堂教学中进行体现,要通过不断的钻研。在“几何小实践”这个单元中,涉及了“三角形分类”的知识。选择这个知识点进行教学设计,并在设计时融入了多元智能理念和信息技术的支持作用,与单纯的数学知识讲授相区别。通过设计丰富、多样的智能学习活动,充分调动、发挥和培养学生各方面的智能潜力,同时,利用信息技术对知识点的探究结果用演示文稿来呈现,加深学生对三角形分类的认识。通过动手、判断、辩论、再次讨论、得出结论、再次动手操作的一系列环节,使学生在反复体验的过程中形成对三角形按边分类的正确、完整的概念,使得他们的智能水平在平常的学习中得到潜移默化的提升。
3、教学目标
(1)使学生能按边之间的`关系给三角形分类并用信息技术进行汇报。
(2)通过动手折叠,探索等腰、等边三角形的性质。
(3)通过探究与活动,培养学生初步的观察、比较和概括的能力。
(4)通过引导学生自主探索、动手操作,培养学生初步的创新精神和实践能力。
(5)培养学生的多元智能发展(注:这是贯穿我们日常学科教学的长远目标)。
对应的新课标:上海市二期课改三年级数学(实验版)第三单元教学目标。
4、教学准备
(1)学生基础:认识三角形;知道三角形的稳定性在生活中的应用。
(2)根据学生学习状况及主动性合理分配学习小组。
(3)设计学生探究的模板。
(4)制订教学评价和智能发展评价量规。
5、所需教学环境及资源材料
(1)具备投影功能的多媒体教室(或网络教室)。
(2)计算机及因特网、音响。
(3)上海市小学数学二期课改(实验版)提供的资源课件片断(三角形初步认识)。
教学过程简述
1、导入新课
本环节涉及:数理逻辑、视觉空间智能。
(1)教师播放学生课前收集的三角
形建筑和物体图片,确定要探究的教学主题。
(2)学生认真观察图片,说出三角形的一些基本特征。
2、搭三角形
本环节涉及:语言、人际沟通、身体运动、视觉空间智能。
(1)教师做示范,并提出学生动手做一些三角形。
(2)学生思考:怎样分工合作才能搭出各种不同的三角形。
(3)学生小组合作搭三角形。
(4)学生交流研讨。
3、三角形分类
本环节涉及:语言、数理逻辑、人际沟通、视觉空间智能。
(1)教师演示电脑课件,提出任务:将做好的三角形分类。
(2)学生小组合作,按自己的想法初步进行分类。
(3)师生间互相交流(电脑演示学生分的结果)。
(4)教师提出更高要求:将有两条边相等的三角形放入集合圈。
(5)学生用拍手来表示赞成和反对:在“涉及三条边都相等的三角形”时,学生间会对其是否属于等腰三角形产生意见分歧,组织学生进行讨论,并用辩论赛的形式由学生自己找出正确答案。
(6)师生共同总结。教师利用多媒体课件和板书来揭示三角形按边分类的结果(三条边不相等的三角形、等腰三角形以及特殊的等腰三角形叫等边三角形)。
(7)巩固练习(利用多媒体课件,及时对学习的新知识进行巩固)。
4、折一折,画一画
本环节涉及:数理逻辑、视觉空间、身体运动智能。
(1)教师取出一个三角形,要求学生动脑筋来判断这是什么三角形。
(2)学生动手操作后发现是等腰三角形,并且是一个轴对称图形。
(3)教师通过电脑演示验证学生的判断,得出判断等腰三角形的最简便方法。
(4)教师再次取出一个三角形,让学生利用好方法进行判断。
(5)学生动手操作后发现是等边三角形,而且有三条对称轴。
(6)教师通过电脑演示验证学生的判断,进行巩固练习。
5、小结并拓展
本环节涉及:数理逻辑、语言言语智能。
(1)教师利用课件,组织学生回忆本节课学习内容。
(2)学生交流表达自己在本节课的学习收获。
(3)布置作业:(拓展)用长方形剪一个等腰三角形。
三角形的认识教学设计2教学内容:
三角形的认识
教学目标:
1.让学生联系实际和利用生活经验。通过观察思想,使学生认识什么样的图形是三角形,知道三角形,知道三角形各部分名称。
2.通过学习实际操作,认识三角形的基本特征及学会三角形按角分类。
3.使学生体会三角形是日常生活中常见的图形。并在学习活动中进一步激发学生学习图形的兴趣和积极性。
4.培养和发展学生初步的空间观念。
教学重点:
三角形的基本特征
教学过程
一.复习铺垫:
通过电脑动态展示,复习锐角、直角、钝角及角的边、角的顶点等概念。如果在角的两边取一定长度,得到两条什么线?把这两条线段连接起来,这是什么图形?
二、感悟抽象建立表征
1.师:我们学过了“三角形”(板书课题),说一说你见到的`物体中,有哪些面是三角形的?(红领巾、三角板、三角巾、房梁等。)
2.做练习纸上的习题。做后讨论下面的问题。
(1)题中哪些图形是三角形?
(2)题中哪些图形不是三角形?为什么?
(由否定例证突出“围成”、“线段”这些词。)
3.师:大家讨论一下,什么样的图形才是三角形。
4.讨论后小结:由三条线段围成的图形叫做三角形。
5.(课件展示图形)
(1)师:这是一个三角形。它由3条线段围成。请看整个三角形,3条线段(边) ……此处隐藏13091个字……上找到我们熟悉的图形吗?
板书:三角形
【设计意图】:由课本插图改为学生熟悉的江阴长江大桥引入,使学生感到亲切,能激发他们的学习兴趣。
2、寻找生活中的三角形。
学生举例说一说生活中见到的三角形。
教师课件展示:红领巾、三角尺、交通指示牌、房屋等含有三角形物体的图片。
【设计意图】:从生活中丰富的三角形物体的图片,使学生从整体上进一步感知三角形,使学生体会到数学与生活的密切联系,唤起他们主动探究的欲望。
二、动手操作,感悟特征
1、做三角形,初步形成概念。
⑴师:三角形是我们非常熟悉的一种图形,你能用自己手中的材料做一个三角形吗?
学生动手操作,小组交流,全班展示。
⑵学生可能出现的方法:
①用三根小棒摆成一个三角形。
②在钉子板上围成三角形。
③用三角板画一个三角形。
④在方格上画一个三角形。
分别指名学生展示自己制作的三角形,并要求其说说自己的想法。
【设计意图】:不同的学生由于生活经验的不同,呈现出来的三角形的形状、大小、位置也不一样,这一环节重点让学生在交流时分析各种做法的共同点,初步感知三角形的特征。
⑶讨论:出示小棒摆的三角形:
这样的图形是三角形吗?为什么?学生讨论教师将图形移动。
【设计意图】:学生对三角形的认识停留在较肤浅的层面上,他们有时会把类似于三角形的图形当作三角形,通过这个环节的.设计,三角形是由三长线围成的这一重要特征。
2、认识三角形各部分名称。
教师出示手中的小棒,我们用小棒围成一个三角形时,实际上是把这根小棒看成一条什么?(线段)
围成一个三角形,需要几条线段?(板书:3条)
师:我们把这三条线段叫做三角形的边。(板书:边)
问:三角形除了边,还有什么?
学生讨论、交流。
教师小结并板书:三条边、三个角、三个顶点。
3、画三角形。
⑴学生在作业本上画一个三角形,同桌互相说一说三角形的边、角、顶角。
⑵在点子图上画两个三角形,(课本想想做做第1题)
学生画好后,再指名说三角形的特征。
【设计意图】:学生在“做三角形、画三角形、比较三角形”等活动中逐步由具体到抽象,由生活到数学,初步实现了三角形的概念的主动建构。
三、合作探究,深入探索。
1、疑问引入
师:通过刚才的活动,我们知道了三角形是三条线段围成的,现在给你任意三根小棒,你能围成三角形吗?
学生自由讨论、交流。
师:能,还是不能,我们用什么办法来解决呢?
板书:实验
【设计意图】:数学猜想是探索数学规律或本质时的一种策略,当学生基本认识了三角形的特征后,教师提出这个猜想的话题,激发了学生对正确结果的渴望,从而水到渠成地进入下一步学习环节——小组实验。
2、合作探究
⑴学生拿出课前准备的信封,拿出4厘米、5厘米、6厘米、10厘米的彩色纸条各一根。
⑵出示表格
选用小棒情况
能否围成三角形
10厘米(红)
6厘米(黄)
5厘米(绿)
4厘米(蓝)
能
否
注:请在表格中用“√”表示。
你发现了什么?
⑶学生分小组实验,并填写表格,组织汇报。
⑷教师用视频展示台展示,学生填写的实验记录表。
师:我们先来看选哪几根小棒不能围成三角形?
教师根据学生的讨论,分别用电脑演示:
A:10、4、5 B : 10、6、4
研究:这两组数据都不能围成三角形,你有什么发现?
板书:4+5<10 6+4=10
小结:两边之和小于第三边,不能围成三角形。
两边之和等于第三边,不能围成三角形。
师:哪几根小棒能围成三角形?
板书:5、6、10 4、5、6
观察一下,你又有什么发现?
将上述板书补充为:
5+6>10 4+5>6
小结:两边之和大于第三边能围成三角形。
【设计意图】:学生通过实验验证自己的猜想,在交流中碰撞思维,引发思考,经历了发现问题、合作探究,解决问题主动获取的过程,学生的主体作用得到充分的发挥。
⑸讨论:在10、4、5和10、6、4这两组数据中,
10+4>5 10+6>4
10+5>4 10+4>6
都有符合两边之和大于第三边的条件,为什么它们不能围成三角形呢?
学生再次讨论、交流。
⑹引导小结:三角形任意两边的长度之和大于第三边。
⑺优化判断:
长边+短边>中边长边+中边>短边短边+中边>长边
问题:只要算一次就能判断出能否围成三角形,你认为该选哪个?为什么?
结论:短边之和大于长边,就能围成三角形。
【设计意图】:教材中的结论是“三角形两条边长度之和大于第三边。”学生对于这个概念的理解还是比较困难的。通过上述环节设计,使学生进一步明确:必须是任意两边长度之和大于第三边才能围成三角形,同时在实际判断中,只要判断“短边之和大于长边”这一次就行了。这样,优化了学生的判断方法,提高了他们的思维能力和解决问题的能力。
验证:同学们量一量自己刚才所画的三角形的三条边的长度,再算一算,看看两条短边之和是否大于长边?
四、解决问题,发展新知。
1、下面哪几组中的三条线段可以围成一个三角形?为什么?
2cm 5cm 6cm
4cm 2cm 2cm
5cm 5cm 5cm
补充问题:用一个算式来表示能还是不能。
想一想:第二个围成的三角形的形状有什么特点?
【设计意图】:充分挖掘教材资源,提升练习层次,既巩固了新知,又拓展了学生的思维。
2、课本“想想做做第3题”。
要求学生解释理由。
3、玩一玩:用三根小棒围成一个三角形,其中两根小棒长度分别是10厘米和6厘米,那么第三根小棒的长度是多少?你认为第三根小棒可以有多少种情况?
学生小组合作探究。
结论:第三根小棒的长度在4厘米与16厘米之间,如果不确定是整厘米数的话,它有无数种可能。
【设计意图】:这是一道开放题,既复习了今天所学内容,又为学生,尤其是学习能力较强的学生提供了一个自己探究的空间,使他们探索数学问题的能力得到提升。
五、课内总结,内化新知。
通过本节课的学习,你知道了哪些知识?
你是通过哪些方法获得这些知识的?