数学教学心得体会范文集锦八篇
当我们有一些感想时,可以记录在心得体会中,它可以帮助我们了解自己的这段时间的学习、工作生活状态。那么心得体会该怎么写?想必这让大家都很苦恼吧,以下是小编整理的数学教学心得体会8篇,希望对大家有所帮助。
数学教学心得体会 篇1一直以来,我都在不断反思、探索,寻觅一条如何才能使学生学好数学,通向高考成功之路。在一段时期的实践中,我发现学生在学习过程中存在着几点问题:
1、很多问题都要靠我讲他们听,我讲得多学生做得少,同学们不善于挤时间,独立动手能力比较差,稍微变个题型就不知所措,问其原因,回答不会,做题没思路,一没思路就不想往下做。平时做题少,很多题型没有见过,以致于思维水平还没有达到一定高度,做起题来有困难。
2、基础知识掌握的不扎实,有些该记忆的公式没有记住、该理解的概念没有理解,尤其是立体几何基本问题的求法,复合函数的求导法则等,导致做题时不知该用哪个公式,还得去翻书。
3、上课听课的效果不好。大部分同学都说,课堂上我讲的东西极大部分能听懂,但一到自已做题就不会。其实这部分同学听懂的只是对某一道题表面上的东西,其实质的东西,它所蕴含的思想方法,没有融入到大脑中,不会举一反三,没有从问题的表面看到本质,思维没有得到升华,课下又不巩固复习,导致讲过的题型仍然不会做。
4、现在有少数学生比较懒,没有养成良好的学习习惯,有些问题他知道思路后,就只知道说不动手,数学课桌子上不准备草稿纸,以致于每次考试都犯了眼高手低的毛病,得不了高分。
对于以上学生存在的问题,我借用了以下的一些基本办法:
1、关爱学生,激起学习激情。我知道热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。
2、每天除了把资料书的作业做完后还做3道典型的高考题,当天批改,对没有完成作业进行批评教育直到其改进为止。
3、强化基础知识的记忆,对一些重点知识、一些性质进行不定时的测验,及时检查他们对基础知识的掌握程度,以便因材施教。
4、提高课堂45分钟效率。课前尽量认真备课,把可能遇见的情况逐一解决,并时常练一些题同时归纳近几年高考的主要题型和所有的知识点。在课堂上我尽量把一些解题的主要思想方法和基本技巧,比如数形结合思想、函数方程的思想、化归与转化思想,选择题中的直接法,排除法,特殊值法,极值法等教给他们,既使他们不能立刻学会,但时间久了,自然而然的就能把方法融入解题当中了。
5、高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。课下个别辅导,通过辅导能知道哪些知识存在问题,或者是我上课遗漏的问题,都能及时得到解决。
6、认真分析数学临界内的临界生和临界外的临界生的学习数学的状态。比如说每次测试都能在90分以上的同学,应建议他们课后可做一些适合自己的题目。对一些数学“学困生”,鼓励他们多问问题,多思考。采用低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。
数学教学心得体会 篇24月28日至30日,我很荣幸参加了全市的小学数学教学研讨会。我非常感谢于科长特意将会议安排在莒南。半年前去美国看望在那儿工作的女儿,回国后于科长为我提供与大家相聚见面的机会(用于科长的话说,是用会议给我接风,哈!),此番深情厚谊对我有着特殊的意义。
内退了,意味着一个人的一生中的工作阶段也就结束了。来美国后,内心有着一种“小舟从此逝,江海度余生”之伤感。我很留恋那份让我痴迷了奋斗了三十余年的教学教研工作,很留恋在多年的教研工作中所结识的各位教研员及众多的老师们,以及朝夕相处在一起工作的同事们。同行同事,情同手足,兄妹般相处。此次欢聚让我重温旧情,再次在活动中感受教研工作的那种氛围,心中涌动着无限的感激与感动。置身会场,似乎又回到了从前。由此我想到人在工作时是一种幸福,即使是忙碌与劳累。
有一句话沉淀在我的心中:“贫贱富贵,总难如意,知足即是称意:山水花竹,无恒主人,得闲便是主人。”回首以往,我很知足。我曾做过那么多年自己能做的、自己感兴趣的对社会有意义的工作,我有这么多的志同道合、亲密无间的同事同仁。今天更增强了我这种满足感,因为我欣赏到多节精彩的课堂教学,聆听到于科长的报告和教研员及骨干教师的评讲。脱离了工作,我便是一个闲人,时间是自己的,便有了做自己做生活主人的感觉,这同样是一种幸福。
在会议的最后环节,于科长让我讲几句话。因为于科长事先没打招呼,突然之间,除了激动,面对近千名教师不知说什么好。满肚子的话不知从啥说起。除了表达谢意之外,学习的体会没有经过思考和整理,只是简要的说了几句,有些遗憾,不知是否让于科长及大家失望。
整个活动的安排可以说内容丰富、形式灵活、安排有序、富有成效,这充分体现了组织者的智慧。所观摩的九节课,充分展示了在几年内骨干教师群体整体水平的提高和我市小学数学课改的成果。有些远离课堂的我,真有种“绿荫不减来时路,添得黄鹂四五声”清新之感,深受启发。作为此次研讨,交流经验、培训教师、总结经验之功能,都落实的很好。教学的改革永无止境。会上,我听了六节课,,因为没有任务也就没做深度思考,但期间我与邻座的教研员和教师不时地有些交流。每到闪光之处情不自禁地发出由衷的赞叹,遇到效果不理想的地方时也讨论其原因,直抒个人的见解。交流讨论的问题,我概括成了三句话:研究教材要深化,教师的语言要简化,关键的地方要细化。
例如六年级下册的统计例1的教学,三节课对教材都做了灵活处理。候老师设计了用某商店各种彩电销量代替教材中市场各品牌彩电占有率,李老师也赋予此例题以情节,且以员工争取工资的形式出现,徐老师以调查本班学生喜欢的文艺节目为统计题材。可以说都注重数学的生活性及趣味性。教材是以A牌、B牌、C牌等为名称给出了市场占有率。如果仔细想一想,教材本身有一个问题,我国的彩电生产技术比较成熟,国产彩电占有了国内的主要市场,为啥不能把ABC换成国产长虹、海信、TCL等具体的品牌,并且不要编造数据,要通过真实的市场调查,即使是调查的时间是某年的。作为国家级教材,这个调查很容易做到。这样有两个好处,一是使学生了解我国彩电的主要品牌有哪些,以及市场销售情况,在使学生了解这些信息的同时,对学生进行爱国主义教育;二是加强数学与生活的联系,使学生感到解决的问题具有现实意义。对于三位教师对教材大胆的处理我非常赞成。但对教材的改动,我又有这样的认识,侯老师是否可以用一个真实的家电商场彩电销售的情况作为素材,当然这有些麻烦,需要去调查,但我觉得很有意义。侯老师虽然把教材中的ABC换成了我国具体彩电的名字,学生 ……此处隐藏7024个字……。
数学教学心得体会 篇8许多专家都认为:一个学生素质的高低最为重要的标志是看他能否通过数学学习形成一定的思想方法,并运用它们去解决数学问题以及日常生活问题。而我在多年的数学教学经验中,也得出一个类似的结论:对大多数学生而言,领悟数学思想方法比具体的数学知识更加重要,因为前者更具有普遍性,在他们未来的生活和工作中能派到用处。教师在日常教学中要适时渗透数学思想方法,对进一步深化数学课堂教学极其重要,这样可避免“题海战”,减轻学生学习负担,提高学生数学能力,更是培养学生创新意识的必要条件。
一、数学教学中的基本思想
在数学领域中数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。但小学生的年龄特点决定有些数学思想方法他们不易接受,而且要想把那么多的数学思想方法都渗透给学生也不现实。因此,应该有选择地渗透一些数学思想方法。
1.数形结合思想方法。
数和形是数学研究的两个主要对象,两者既有区别又有联系,一方面,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化;另一方面,复杂的几何形体可以用简单的数量关系来表示。在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学问题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力。
2.集合思想方法。
集合是数学的重要理论和解题工具。小学数学教材中蕴涵着大量的集合思想,集合的思想和概念渗透于数学教学和各个阶段,在新课程实施的过程中,集合思想在小学数学教学中的渗透愈来愈广泛,其体现形式愈来愈丰富多彩。因此,在实施素质教育的过程中,不仅仅向学生传授知识,而且要把含在教材中的集合思想有意识地对学生进行渗透,这样有利于培养学生的抽象概括能力,有利于提高学生分析和解决问题的能力。教材采用直观手段,利用图形和实物渗透集合的思想方法。
3.化归思想方法。
化归是数学中最普遍使用的一种思想方法。它的核心是以可变的观点对所要解决的问题进行变形,就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题,从而求得原问题的解决。其基本思想是:将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过乙问题的解答返回去求得原问题甲的解答。这种化归思想不同于一般所讲的“转化”、“转换”,它具有不可逆转的单向性。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,让学生初步学会化归的思想方法。如:教学圆面积的计算方法,这里要推导出圆面积公式,在推导过程中,采用把圆分成若干等份,然后拼成一个近似长方形,从而推导出圆的面积公式。这里把圆剪拼成近似长方形的过程,就是把曲线形化归为直线形的过程。
4.分类思想方法。
分类是根据教学对象的本质属性的异同按某种标准,将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类进行分析研究。分类是数学发现的重要手段,在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。一般分类时要求满足互斥,无遗漏、最简便的原则。如整数以能否被2整除为例,可分为奇数和偶数;若以自然数的约数个数来分类,则可分为质数、合数和1。几何图形中的分类更常见,如学习“角的分类”时,涉及到许多概念,而这些概念之间的关系渗透着量变到质变的规律。其中几种角是按照度数的大小,从量变到质变来分类的,由此推理到在三角形中以最大一个角大于、等于和小于90°为分类标准,可分为钝角三角形、直角三角形和锐角三角形。而三角形以边的长短关系为分类标准,又可分为不等边三角形和等边三角形,等边三角形又可分为正三角形和等腰三角形。通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生新的数学概念和数学知识的结构。
此外,还有类比思想、组合思想、极限思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
二、小学数学教学中渗透数学思想方法的策略。
1、在数学内容准备和概念、定理、公式的教学中渗透数学思想方法
概念既是思维的基础,又是思维的结果。恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,应注意:解释概念产生的背景,让学生了解定义的合理性和必要性;揭示概念的形成过程,让学生综合概念定义的本质属性;巩固和加深概念理解,让学生在变式和比较中活化思维。
2、在自主、合作探究学习过程中领悟和掌握数学思想方法
在平时教学中注重依据基本数学思想,在解题时注重与学生分析、探讨解题思路与策略,在解题后带领学生进行回顾,如本题应用哪些知识或概念,利用哪些基本技能,体现了哪些数学思想方法,还有哪些解法(一题多解)还有哪些题可借助本题的解法(多题一解)。经过长期这样的训练,能大大拓宽学生的解题思路。在探索过程中,重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法,使学生掌握关于数学思想方法的知识,并对这样的“知识”消化,并吸收具有“个性”的数学思想方法,逐步形成应用数学思想方法指导思想活动。这样遇到问题时,学生才能胸有成竹,从容对待。
3、在知识的归纳总结和复习中概括数学思想方法
在平时教学复习中,要以思想方法贯穿整个教学过程,将各个知识点,引导学生在解题训练过程中以数学思想为主线,并进行知识点概括与归纳整理,从不同内容、不同角度、不同问题、不同方法中寻找同一思想。把数学思想方法纳入教学计划中,有目的、有步骤地引导学生参与数学思想方法的提练、概括的过程。对于习题的选择不可以条块分割、泾渭分明,应在知识网络的交汇处选题,有意识地设计隐含着数学思想方法的习题、高频率再现,精心安排,恰到好处的点拔。特别是章节复习时,在对知识复习的同时,将统领知识的思想方法概括出来,增加学生对数学思想方法的应用意识,从而有利于学生更透彻地理解所学知识,提高独立分析、解决问题的能力。
数学思想方法是数学中最精彩、最本质、最有价值的东西。正如日本著名数学家、教育家米山国藏指出:“科学工作者所需要的数学知识,相对地说是不够的,而数学的精神、思想与方法却是绝对必需的;数学知识可以记忆一时,但数学的精神、思想与方法却永远发挥作用,可以受益终生,是数学能力之所在,是数学教育根本目的之所在。”总之,数学教学必须着眼于现代化,以适应21世纪教学教育发展和社会的要求。在平时的教学中渗透、提炼数学思想方法,将数学知识真正建立在数学思想方法基础之上,用现代数学的思想方法指导学生掌握数学的核心内容,并且能将知识和方法用于今后的工作和生活之中。